The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star
نویسندگان
چکیده
The propeller regime of disk accretion to a rapidly rotating magnetized star is investigated here for the first time by axisymmetric 2.5D magnetohydrodynamic simulations. An expanded, closed magnetosphere forms in which the magnetic field is predominantly toroidal. A smaller fraction of the star’s poloidal magnetic flux inflates vertically, forming a magnetically dominated tower. Matter accumulates in the equatorial region outside magnetosphere and accretes to the star quasi-periodically through elongated funnel streams which cause the magnetic field to reconnect. The star spins-down owing to the interaction of the closed magnetosphere with the disk. For the considered conditions, the spin-down torque varies with the angular velocity of the star (ω∗) as ∼ −ω∗1.3 for fixed mass accretion rate. The propeller stage may be important in the evolution of X-ray pulsars, cataclysmic variables and young stars. In particular, it may explain the present slow rotation of the classical T Tauri stars. Subject headings: accretion, dipole — plasmas — magnetic fields — stars: magnetic fields — X-rays: stars
منابع مشابه
Launching of Jets by Propeller Mechanism
We carried out axisymmetric simulations of disk accretion to a rapidly rotating magnetized star in the “propeller” regime. Simulations show that propellers may be “weak” (with no outflows), and “strong” (with outflows). Investigation of the difference between these two regimes have shown that outflows appear only in the case where the “friction” between the disk and magnetosphere is sufficientl...
متن کاملPropeller-driven Outflows and Disk Oscillations
We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic fie...
متن کاملاثر مقاومت مغناطیسی متغیر بر ساختار قرصهای برافزایشی با پهن رفت غالب مغناطیده دوقطبی
In this work, we carry out self –similar solutions of viscous-resistive accretion flows around a magnetized compact object. We consider an axi-symmetric, rotating, isothermal steady accretion flow, which contains a poloidal magnetic field of the central star. The dominant mechanism of energy dissipation is assumed to be the turbulence viscosity and magnetic diffusivity due to the magnetic field...
متن کاملAccretion torque on magnetized neutron stars
The conventional picture of disk accretion onto magnetized neutron stars has been challenged by the spin changes observed in a few X-ray pulsars, and by theoretical results from numerical simulations of diskmagnetized star interactions. These indicate possible accretion during the propeller regime and the spin-down torque increasing with the accretion rate. Here we present a model for the accre...
متن کاملMhd Simulations of Bondi Accretion to a Star in the “propeller” Regime
This work investigates Bondi accretion to a rotating magnetized star in the “propeller” regime using axisymmetric resistive, magnetohydrodynamic simulations. In this regime accreting matter tends to be expelled from the equatorial region of the magnetosphere where the centrifugal force on matter rotating with the star exceeds the gravitational force. The regime is predicted to occur if the magn...
متن کامل